BROADBAND DIELECTRIC SPECTROSCOPY OF Ag$_{1-x}$Li$_x$NbO$_3$ (x = 0.05) CERAMICS

Arnas Vilmantas1, Edita Palaimienė1, Jan Macutkevič1, Jūras Banys1, Antoni Kania2

1Vilnius University, Faculty of Physics, Sauletekio av. 9, III b., LT-10222 Vilnius, Lithuania
2A. Chełkowski Institute of Physics, University of Silesia, Uniwersytecka av. 4, 40-007 Katowice, Poland

arnas.vilmantas@ff.stud.vu.lt

Nowadays ferroelectric materials are a widely investigated topic due to their wide array of uses. Currently, lead based ceramics are dominant in regard to their excellent piezoelectric properties. However, due to their pollutive nature, alternative materials are necessary [1]. One of the possibilities is Ag$_{1-x}$Li$_x$NbO$_3$. Its excellent piezoelectric properties, high polarization and phase transition temperatures spark an interest in further research of this material. The present work is aimed towards investigating Ag$_{1-x}$Li$_x$NbO$_3$ via dielectric spectroscopy on a wide frequency scale. Ceramics were prepared by solid-state reaction method [2]. The investigation was carried out for a sample of x = 0.05 in wide temperature (120 K – 500 K) and frequency (100 kHz – 750 GHz) ranges. The obtained results show a weak dielectric anomaly close to ferroelectric phase transition temperature T = 300 K and a much stronger dielectric anomaly close to antiferroelectric phase transition temperature T = 400 K (Fig. 1). The value of the dielectric permittivity is quite high, while losses are quite low in wide frequency and temperature ranges, indicating that the ceramics are suitable for microwave applications.

Fig. 1. Temperature dependence of real (ε') and imaginary (ε'') parts of complex dielectric permittivity of Ag$_{0.95}$Li$_{0.05}$NbO$_3$ ceramics at varying frequencies.